
Near Neighbor Problem Made Fair

Sariel Har-Peled
UIUC

Sepideh Mahabadi
TTIC

Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects,
find the closest one to the query object.

Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects,
find the closest one to the query object.

Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects,
find the closest one to the query object.

• Near Neighbor: given a set of objects, find
one that is close enough to the query object.

There are many applications of NN

Searching for the closest object

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

𝑞𝑞

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded

intrinsic dimension

𝑞𝑞
𝑝𝑝∗

𝑟𝑟

Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1

𝑞𝑞
𝑝𝑝

𝑟𝑟
𝑐𝑐𝑟𝑟

Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
─ For Hamming (and Manhattan) query time is 𝑛𝑛𝑂𝑂(1/𝑐𝑐) [IM98]
─ and for Euclidean it is 𝑛𝑛𝑂𝑂(1

𝑐𝑐2
) [AI08]

𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟𝑝𝑝

Fair Near Neighbor

Sample a neighbor of the query uniformly at random

 Individual fairness: every neighbor has the same
chance of being reported.
 Remove the bias inherent in the NN data structure

Fair Near Neighbor

Sample a neighbor of the query uniformly at random

 Individual fairness: every neighbor has the same
chance of being reported.
 Remove the bias inherent in the NN data structure

Applications:
Removing noise, k-NN classification
Anonymizing the data
Counting the neighborhood size

Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal:
• Return each point 𝑝𝑝 in the neighborhood of 𝑞𝑞 with uniform

probability
• Do it in sub-linear time and small space

𝑞𝑞1
2

𝑟𝑟 1
2

Approximate Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑,
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal of Approximate Fair NN
─ Any point 𝑝𝑝 in 𝑁𝑁(𝑞𝑞, 𝑟𝑟) is reported with “almost uniform”

probability, i.e., 𝜆𝜆𝑞𝑞(𝑝𝑝) where

1
1 + 𝜖𝜖 𝑁𝑁 𝑞𝑞, 𝑟𝑟

≤ 𝜆𝜆𝑞𝑞(𝑝𝑝) ≤
1 + 𝜖𝜖
𝑁𝑁 𝑞𝑞, 𝑟𝑟

𝑞𝑞1
2

𝑟𝑟 1
2

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

𝑞𝑞

𝑟𝑟

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

𝑞𝑞

𝑟𝑟
𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Experiments

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Experiments

 Recent paper [Aumuller, Pagh, Silvestry’19] defining the same notion

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Locality Sensitive Hashing (LSH)
One of the main approaches to solve the Nearest Neighbor
problems

Hashing scheme s.t. close points have higher
probability of collision than far points

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher
probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash
function

Locality Sensitive Hashing (LSH)

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Hashing scheme s.t. close points have higher
probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash
function

If 𝑝𝑝 − 𝑝𝑝′ ≤ 𝑟𝑟 , they collide w.p. ≥ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
If 𝑝𝑝 − 𝑝𝑝′ ≥ 𝑐𝑐𝑟𝑟 , they collide w.p. ≤ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

For 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ ≥ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

Locality Sensitive Hashing (LSH)

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly

the neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood

Locality Sensitive Hashing (LSH)

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly

the neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood

• How to report a uniformly random
neighbor from union of these buckets?

Locality Sensitive Hashing (LSH)

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly

the neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood

• How to report a uniformly random
neighbor from union of these buckets?

• Collecting all points might take 𝑂𝑂(𝑛𝑛) time

Locality Sensitive Hashing (LSH)

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Approaches

How to output a random neighbor from
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a uniformly random bucket
2. Choose a uniformly random point in the

bucket

Approach 1: Uniform/Uniform

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

How to output a random neighbor from
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket

Approach 2: Weighted/Uniform

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

How to output a random neighbor from
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

Approach 2: Weighted/Uniform

𝑞𝑞

Number of buckets that 𝒑𝒑
appears in

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

How to output a random neighbor from
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

Approach 3: Optimal

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability

𝑞𝑞

Approach 3: Optimal

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree

𝑞𝑞

Approach 3: Optimal

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

1. Choose a random bucket proportional to
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree
 Might need 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑂𝑂(𝐿𝐿) samples
 Total time is 𝑂𝑂(𝐿𝐿2)

𝑞𝑞

Approach 3: Optimal

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂(𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)
 Large dependency on 𝜖𝜖 of the form 𝑂𝑂(1

𝜖𝜖2
)

 Via a different sampling approach we show how to reduce the dependency
to logarithmic 𝑂𝑂(log 1

𝜖𝜖
).

Experiments

Setup
• Take MNIST as the data set
• Ask a query several times and compute the empirical distribution of the

neighbors.
• Compute the statistical distance of the empirical distribution to the uniform

distribution

Experiments

Setup
• Take MNIST as the data set
• Ask a query several times and compute the empirical distribution of the

neighbors.
• Compute the statistical distance of the empirical distribution to the uniform

distribution
Comparison
• Our algorithm performs 2.5 times worse than the optimal algorithm, but the

other two perform 7 and 10 times worse than the optimal.
• Four times faster than the optimal but 15 times slower than the other two

Conclusion

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

 The dependence on the parameter 𝑛𝑛 matches the standard Nearest
Neighbor.
We get an independent near neighbor each time we draw a sample.
 More generally the approach works for sampling form a sub-

collection of sets.

Conclusion

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

 The dependence on the parameter 𝑛𝑛 matches the standard Nearest
Neighbor.
We get an independent near neighbor each time we draw a sample.
 More generally the approach works for sampling form a sub-

collection of sets.
Open Problem:

o Finding the optimal dependency on the density parameter: 𝐴𝐴 𝑞𝑞,𝑐𝑐𝑐𝑐
𝐴𝐴 𝑞𝑞,𝑐𝑐

Conclusion

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Thanks
Questions?

 The dependence on the parameter 𝑛𝑛 matches the standard Nearest
Neighbor.
We get an independent near neighbor each time we draw a sample.
 More generally the approach works for sampling form a sub-

collection of sets.
Open Problem:

o Finding the optimal dependency on the density parameter: 𝐴𝐴 𝑞𝑞,𝑐𝑐𝑐𝑐
𝐴𝐴 𝑞𝑞,𝑐𝑐

	Near Neighbor Problem Made Fair
	Nearest Neighbor Problems
	Nearest Neighbor Problems
	Nearest Neighbor Problems
	There are many applications of NN
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Approximate Near Neighbor
	Approximate Near Neighbor
	Fair Near Neighbor
	Fair Near Neighbor
	Fair Near Neighbor
	Approximate Fair Near Neighbor
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Approaches
	Approach 1: Uniform/Uniform
	Approach 2: Weighted/Uniform
	Approach 2: Weighted/Uniform
	Approach 3: Optimal
	Approach 3: Optimal
	Approach 3: Optimal
	Approach 3: Optimal
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Experiments
	Experiments
	Conclusion
	Conclusion
	Conclusion

