
Near Neighbor Problem Made Fair

Sariel Har-Peled
UIUC

Sepideh Mahabadi
TTIC



Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects, 
find the closest one to the query object.



Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects, 
find the closest one to the query object.



Nearest Neighbor Problems

• Nearest Neighbor: Given a set of objects, 
find the closest one to the query object.

• Near Neighbor: given a set of objects, find 
one that is close enough to the query object.



There are many applications of NN

Searching for the closest object
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Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded 

intrinsic dimension
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Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
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Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
─ For Hamming (and Manhattan) query time is 𝑛𝑛𝑂𝑂(1/𝑐𝑐) [IM98] 
─ and for Euclidean it is 𝑛𝑛𝑂𝑂( 1

𝑐𝑐2
) [AI08]

𝑞𝑞

𝑟𝑟
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Fair Near Neighbor

Sample a neighbor of the query uniformly at random

 Individual fairness: every neighbor has the same 
chance of being reported.
 Remove the bias inherent in the NN data structure



Fair Near Neighbor

Sample a neighbor of the query uniformly at random

 Individual fairness: every neighbor has the same 
chance of being reported.
 Remove the bias inherent in the NN data structure

Applications:
Removing noise, k-NN classification
Anonymizing the data
Counting the neighborhood size 



Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Return each point 𝑝𝑝 in the neighborhood of 𝑞𝑞 with uniform 

probability
• Do it in sub-linear time and small space
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2
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Approximate Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal of Approximate Fair NN
─ Any point 𝑝𝑝 in 𝑁𝑁(𝑞𝑞, 𝑟𝑟) is reported with “almost uniform” 

probability, i.e.,  𝜆𝜆𝑞𝑞(𝑝𝑝) where

1
1 + 𝜖𝜖 𝑁𝑁 𝑞𝑞, 𝑟𝑟

≤ 𝜆𝜆𝑞𝑞(𝑝𝑝) ≤
1 + 𝜖𝜖
𝑁𝑁 𝑞𝑞, 𝑟𝑟

𝑞𝑞1
2

𝑟𝑟 1
2



Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
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 Experiments

 Recent paper [Aumuller, Pagh, Silvestry’19] defining the same notion

Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)



Locality Sensitive Hashing (LSH)
One of the main approaches to solve the Nearest Neighbor 
problems



Hashing scheme s.t. close points have higher 
probability of collision than far points
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• 𝑔𝑔𝑖𝑖 is an independently chosen hash 
function

Locality Sensitive Hashing (LSH)

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿



Hashing scheme s.t. close points have higher 
probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash 
function

If 𝑝𝑝 − 𝑝𝑝′ ≤ 𝑟𝑟 , they collide w.p.  ≥ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
If 𝑝𝑝 − 𝑝𝑝′ ≥ 𝑐𝑐𝑟𝑟 , they collide w.p. ≤ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

For 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ ≥ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

Locality Sensitive Hashing (LSH)
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𝑔𝑔𝐿𝐿



Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly 

the neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
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Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly 

the neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood

• How to report a uniformly random 
neighbor from union of these buckets?

• Collecting all points might take 𝑂𝑂(𝑛𝑛) time

Locality Sensitive Hashing (LSH)

𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿



Approaches



How to output a random neighbor from 
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a uniformly random bucket
2. Choose a uniformly random point in the 

bucket

Approach 1: Uniform/Uniform
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How to output a random neighbor from 
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to 
its size

2. Choose a random point in the bucket

Approach 2: Weighted/Uniform
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How to output a random neighbor from 
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to 
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked 

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

Approach 2: Weighted/Uniform
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How to output a random neighbor from 
⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 :

1. Choose a random bucket proportional to 
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked 

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

,  o.w. repeat

Approach 3: Optimal
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its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked 

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
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1. Choose a random bucket proportional to 
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked 

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree
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1. Choose a random bucket proportional to 
its size

2. Choose a random point in the bucket
 Each point 𝑝𝑝 in the neighborhood is picked 

w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

, o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree
 Might need 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑂𝑂(𝐿𝐿) samples
 Total time is 𝑂𝑂(𝐿𝐿2)
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Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.



Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type



Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) buckets out of 𝐿𝐿 buckets to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)
 Large dependency on 𝜖𝜖 of the form 𝑂𝑂( 1

𝜖𝜖2
)

 Via a different sampling approach we show how to reduce the dependency 
to logarithmic 𝑂𝑂(log 1

𝜖𝜖
).
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Experiments

Setup
• Take MNIST as the data set
• Ask a query several times and compute the empirical distribution of the 

neighbors.
• Compute the statistical distance of the empirical distribution to the uniform 

distribution
Comparison
• Our algorithm performs 2.5 times worse than the optimal algorithm, but the 

other two perform 7 and 10 times worse than the optimal.
• Four times faster than the optimal but 15 times slower than the other two
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Domain Guarantee Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

w.h.p 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ⋅
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

In expectation 𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

 The dependence on the parameter 𝑛𝑛 matches the standard Nearest 
Neighbor.
We get an independent near neighbor each time we draw a sample.
 More generally the approach works for sampling form a sub-

collection of sets.
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o Finding the optimal dependency on the density parameter: 𝐴𝐴 𝑞𝑞,𝑐𝑐𝑐𝑐
𝐴𝐴 𝑞𝑞,𝑐𝑐
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Thanks
Questions?

 The dependence on the parameter 𝑛𝑛 matches the standard Nearest 
Neighbor.
We get an independent near neighbor each time we draw a sample.
 More generally the approach works for sampling form a sub-

collection of sets.
Open Problem:

o Finding the optimal dependency on the density parameter: 𝐴𝐴 𝑞𝑞,𝑐𝑐𝑐𝑐
𝐴𝐴 𝑞𝑞,𝑐𝑐
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